
Fault-tolerant resource estimation of
quantum random-access memories

Olivia Di Matteo, Vlad Gheorghiu, and Michele Mosca

22 June 2019 − QRE 2019 − Phoenix, AZ

1 / 32

Quantum random-access memory (qRAM)

Many quantum algorithms require routines to store and query
classical/quantum data in superposition.

2 / 32

Quantum random-access memory (qRAM)

We will think of the qRAM as an oracle.

The query can take many different forms:

Read in a bit bx as a phase (e.g. Grover’s algorithm)

|x〉 → (−1)bx |x〉

Read in a bit bx as a qubit (e.g. element distinctness)

|x〉|0〉 → |x〉|bx〉

Read in a complex vector as amplitudes (e.g. HHL algorithm)

b = (b1 . . . bn)→
∑
j

bj |j〉

3 / 32

The trouble with qRAM

Problem

“We made this really cool algorithm. It runs really fast!
...Assuming that I have this very specifically crafted input state and can query a qRAM efficiently.”

− many recent quantum algorithm papers

Why is this a problem?

To run algorithms ‘at scale’ with a large number of queries we
need to run them fault-tolerantly. But to run something
fault-tolerantly typically incurs a massive overhead.

Can we really assume that querying a qRAM can be done
efficiently in a fault-tolerant setting?

4 / 32

No.

But this isn’t the end of the story.

Our goal is to analyze the tradeoffs and resources required for
fault-tolerant qRAM.

There are two contexts to consider:

1. Small number of queries

2. Large number of queries (our work)
qRAM circuit families
Runtime complexities
Surface code costs and resource estimates

5 / 32

Our qRAM model

We want to query classical data in superposition:∑
j

αj |j〉|0〉 −→
∑
j

αj |j〉|bj〉

where |bj〉 is either |0〉 or |1〉 (not a superposition).

6 / 32

1. Small number of queries

Bucket-brigade qRAM (Giovannetti, Lloyd, Maccone 2008).

wait

wait

wait

wait wait wait wait

Polynomial number of operations → can get away with
inverse-polynomial gate error rates.

7 / 32

2. Large number of queries

− Regev and Schiff (2008)

In algorithms with a superpolynomial number of queries, it appears
that we must use fault-tolerant error correction to suppress the
error rates to be superpolynomially small (Arunachalam et. al,
2015).

8 / 32

Resource estimation of fault-tolerant qRAM

What is the cost of fault-tolerantly implementing a large qRAM
performing a large number of queries?

Logical-layer cost model

Cost = Logical qubits× T -depth

Physical-layer cost model

Cost = Physical qubits× Surface code cycles

9 / 32

How to build a qRAM

There are two ways to store data in a qRAM:

1. Explicitly: data is stored in actual qubit states in hardware
and are queried by coupling to them with CNOTs

Advantages: Circuit needs to be compiled only once;
independent of the contents of the memory.

Disadvantages: Space overhead - need as many qubits as you
have memory slots used only for storage. Need to initialize
them and ensure they maintain their state.

10 / 32

How to build a qRAM

2. Implicitly: data is encoded into a circuit. Can be considered
as a qROM or lookup table.

Advantages: Can in principle design more “compact” circuits.
Can optimize based on structure and content of the memory.

Disadvantages: Can only do this if you know the contents of
the memory in advance. Requires recompilation of the query
circuit when memory contents are updated.

11 / 32

How to build a qRAM

We focus mostly on designing implicit circuits, but also analyze an
explicit circuit (bucket brigade) for comparison.

Key parameters are:

n, the number of address bits (memory can hold 2n bits)

q, denotes that 2q memory locations contain a 1

12 / 32

A simple qRAM circuit

Let n = 3, q = 2. Suppose we know the locations of the 1s:
|000〉, |001〉, |011〉, |111〉.

Design a circuit such that ‘valid’ addresses flip output bit to |1〉.

13 / 32

A simple qRAM circuit

The good: This circuit uses very few
qubits.
The bad: It will be slow.

Calculate1 logical qubits and T -depth:

NQ = 2n

Td = 4 · 2q(n − 2)

Then total cost is O(n22q).

1We add some ancillae to implement the mixed-polarity gates.
14 / 32

A different approach

Parallelize everything as much as we can.

The good: It will be fast.
The bad: Huge amount of
qubits.

Resources:

NQ = 2n · 2q + 1

Td = 4(n − 2)

Total cost is still O(n22q), but
we have traded space for time.

15 / 32

Explicit version: bucket-brigade qRAM

Memory contents stored in a
register of qubits. Log-depth
fanout of address bits, readout
using Toffolis.

If we fully parallelize Toffolis:

NQ = 8 · 2n

Td = 2n − 1

Total cost is O(n2n);
independent of contents of
memory/number of 1s.

Image credit: S. Arunachalam, V. Gheorghiu, T. Jochym-OConnor, M. Mosca, P. Srinivasan, New Journal of

Physics, 17 (12) 123010 (2015)

16 / 32

Complexity cost of a qRAM

Circuit Large depth Large width Bucket brigade parallel

NQ 2n n2q+1 + 1 8 · 2n

Td 2q+2(n − 2) 4(n − 2) 2n − 1

Cost O(n2 · 2q) O(n2 · 2q) O(n · 2n)

Large depth/width circuits become advantageous for sparser
memories, when q ≈ n − log n.

What about actual resource costs?

17 / 32

The numbers...

We perform circuit synthesis over Clifford + T .

We perform estimates using defect-based surface codes2.

All our circuits, data, and estimation routines are available at:
https://github.com/glassnotes/FT_qRAM_Circuits

2Estimates using lattice surgery are in progress.
18 / 32

https://github.com/glassnotes/FT_qRAM_Circuits

The numbers...

Important note:

1. We have estimated the physical resources making very
optimistic assumptions about the surface code:

Cycle time of 200ns
Gate error rate of 10−5

Input state injection failure probability 10−4

2. State distillation is the limiting step in the runtime, but we
always have as many distilleries as is needed for a layer of
T -depth

3. We assume a random memory, with the ‘worst’ possible
situation in each case, and therefore don’t perform any
extensive circuit optimization.

So, don’t take the numbers too literally. They are meant to be
representative of the sheer scale of the problem, and to highlight
the different tradeoffs between our circuits.

19 / 32

Space vs. time for n = 15 to n = 36 (q = n − 1)

Bucket Brigade Parallel

Large Width Small Depth

Small Width Large Depth

Circuit

Space vs. time tradeoff (q = n - 1)

1e+4 1e+6 1e+8 1e+10 1e+12 1e+14 1e+16

Physical qubits

1e-4

1e-3

1e-2

1e-1

1e+0

1e+1

1e+2

1e+3

1e+4

1e+5

1e+6

1e+7

1e+8
T
im

e
 (

s
)

20 / 32

Space vs. time

Circuit n q Total time (s) Physical qubits

Bucket brigade parallel 15 - 3.48 · 10−4 2.89 · 108

Large width small depth 15 14 6.24 · 10−4 5.84 · 108

Small width large depth 15 14 7.86 4.23 · 104

Bucket brigade parallel 36 - 2.13 · 10−3 1.50 · 1015

Large width small depth 36 35 4.35 · 10−3 7.06 · 1015

Small width large depth 36 35 7.55 · 107 2.80 · 105

Why these n?

n = 15⇒ 4KB - Apple I shipped with this much RAM in 1976

n = 36⇒ 8GB - what machines ship with today

21 / 32

Hybrid circuits

Can we make our space-time tradeoffs more flexible?

Idea: Control on the first k address bits, then use the outputs to
control on the remaining n − k.

22 / 32

Hybrid circuits

We can then:

Run this as-is

Parallelize only the top ‘tier’,
or only the bottom ‘tier’

Parallelize everything

In the worst case, there will be 2k unique outputs from the ‘top
tier’. Is this really better? How does it depend on k?

23 / 32

Surface code cost estimates for n = 36, q = 35

0 5 10 15 20 25 30 35

k

54.0

54.5

55.0

55.5

56.0

56.5

57.0

57.5

58.0

58.5

59.0
lo

g
2
(T

o
ta

l
c
o
s
t)

Bucket Brigade Parallel

Hybrid Parallel

Large Width Small Depth

Small Width Large Depth

Circuit

24 / 32

Surface code cost estimates for n = 36, q = 30

0 5 10 15 20 25 30 35

k

50.0

50.5

51.0

51.5

52.0

52.5

53.0

53.5

54.0

54.5

55.0
lo

g
2
(T

o
ta

l
c
o
s
t)

Bucket Brigade Parallel

Hybrid Parallel

Large Width Small Depth

Small Width Large Depth

Circuit

25 / 32

Space vs. time tradeoff for n = 36, q = 35

Bucket Brigade Parallel

Hybrid Parallel

Large Width Small Depth

Circuit

Space vs. time tradeoff (n = 36, q = 35)

1e+13 1e+14 2e+14 1e+15 2e+15 1e+16

Physical qubits

1e-3

2e-3

3e-3

4e-3

5e-3

6e-3

7e-3

8e-3

9e-3
1e-2

T
im

e
 (

s
)

26 / 32

Space vs. time tradeoff for n = 36, q = 30

Bucket Brigade Parallel

Hybrid Parallel

Large Width Small Depth

Circuit

Space vs. time tradeoff (n = 36, q = 30)

1e+13 1e+14 2e+14 1e+15 2e+15 1e+16

Physical qubits

1e-3

2e-3

3e-3

4e-3

5e-3

6e-3

7e-3

8e-3

9e-3
1e-2

T
im

e
 (

s
)

27 / 32

SelectSwap circuits

Low, Kliuchnikov, Schaeffer. Trading T-gates for dirty qubits in
state preparation and unitary synthesis (arXiv:1812.00954)

A different way of making a depth/width tradeoff, with additional
flexibility in terms of the input qubits.

Duplicate lower register λ times - larger λ means more qubits and
more SWAPs, but smaller MPMCTs in the upper register.

28 / 32

SelectSwap circuits

Logical-level runtime complexity; λ = O(
√
N) is optimal.

Ancillae Qubits T -depth T -count

Clean bλ+ 2 dlog2Ne N
λ + log λ 4

⌈
N
λ

⌉
+ 8bλ

Dirty (b + 1)λ+ 2 dlog2Ne N
λ + log λ 8

⌈
N
λ

⌉
+ 32bλ

Let’s compare with our hybrid circuits: set b = 1,N = 2n.

Ancillae Qubits T -depth T -count

Clean λ+ 2n 2n

λ + log λ 4
⌈
2n

λ

⌉
+ 8λ

Dirty 2λ+ 2n 2n

λ + log λ 8
⌈
2n

λ

⌉
+ 32λ

29 / 32

Space vs. time for SelectSwap circuits for n = 36

For simplicity, choose λ = 2m, m = 1, 2, ..., n − 1.

Hybrid

Hybrid Parallel

SelectSwap

SelectSwap Dirty

Circuit

Space vs. time for 8GB RAM

1e+4 1e+6 1e+8 1e+10 1e+12 1e+14 1e+16

Physical qubits

1e-4

1e-3

1e-2

1e-1

1e+0

1e+1

1e+2

1e+3

1e+4

1e+5

1e+6

1e+7

1e+8

T
im

e
 (

s
)

30 / 32

Outlook

Bad news: Unlikely we’ll be querying large-scale qRAMs efficiently
any time soon.

Good news: Tons of room for improvement!

... and lots left to do:

estimates for other models of qRAM

exploring a wider range of hybrid circuits

costing ‘real-world’ examples that have been heavily optimized

better surface code techniques (lattice surgery)

see where we can take advantage of special address structures

31 / 32

Acknowledgments

Thank you for your attention!

Thanks to Vlad and Michele, Matt Amy, Dominic Berry, Austin
Fowler, Craig Gidney, and Matthias Soeken for useful discussions,
and my thesis committee (Richard Cleve, Seth Lloyd, Roger Melko,
Kevin Resch) for a critical reading of an early version of this work.

32 / 32

