How expensive is fault-tolerant random circuit sampling? Craig Gidney

Background - Sampling random quantum circuits

Is it a good problem for quantum advantage?

PROS:

Trivial for quantum computers. Hard for classical computers. NISQ compatible.

CONS:

Not directly useful. Expensive to verify.

Goals of this talk

Surface:

Estimate the cost of random circuit sampling using fault tolerant techniques (instead of NISQ techniques).

Underneath:

Understand the minimum cost of classically intractable fault tolerant tasks.

Define an intermediate goal that experimentalists can target.

Set a baseline that can be used to track improvements to error correction.

Quantum fault tolerance is expensive

Classical AND gate (with incredibly low error) <0.00000001

transistor seconds

Fault tolerant quantum AND gate (with error rate good enough for Shor)

20

qubit seconds

There's a chasm on the way to fault tolerance

Projected physical qubit counts for classically intractable fault tolerant tasks (assuming 5dB error suppression per code distance) (using current techniques)

The cost of fault tolerance is not stagnant

Recent ideas for further significant improvement explored in arXiv:1905.06903

Goals of this talk (reiterated)

Understand the minimum cost of classically intractable fault tolerant tasks.

Define an intermediate goal that experimentalists can target.

Set a baseline that can be used to track improvements to error correction.

Building Blocks

Hardware requirements

Quality: 5 dB of logical error suppression per code distance

code_distance += 2
$$\longrightarrow$$
 logical_error_rate /= 10
e.g.
 $\approx 10^{-3}$ two qubit gate error
 $\approx 10^{-2}$ measurement gate error

Speed: 1 microsecond surface code cycle time

e.g. 1 Measurement + 8 CZ + 2 Hadamard in sequence

Distance d=13 surface code logical qubit patch

physical qubit count = $2(d+1)^2$ = 392

logical error rate per cycle ≈ -5*(d+3) dB ≈ 10⁻⁸

No-error half-life of ≈1 minute

Layout: 12x5 board with 2 columns unoccupied

Stores 50 d=13 logical qubits (60 including work area) Total physical qubit count = $12*5 * 2*(13+1)^2 \approx 23.5$ K No-logical-errors-at-all-anywhere half-life of ≈ 1 second

Low-footprint Hadamard

Figure source: arXiv:1808.02892

Low footprint T state distillation

Top down view

Independently reported in <u>arXiv:1905.06903</u>

Rear view 10

Generalized T gate: phasing products of Paulis

-1 eigenstates of P phased by 45 degrees +1 eigenstates of P phased by 0 degrees (circuit is for $P = X_0 Z_1 X_3$)

Generalized T gate has an efficient spacetime layout

Hadamard operations

Building blocks (reiterated)

Algorithm and Cost

Mix up state using sweeps of generalized Ts

Mix up state using sweeps of generalized Ts

Sweep operating area back and forth for as long as possible while applying generalized Ts to adjacent qubits

Pick random non-commuting X/Z Pauli products to phase

Back of the envelope generalized T gate rate

- + 3d cycles to Hadamard Xs into Zs
- + 10d cycles to distill a T state
- + 1d cycles to measure the P*T observable
- + 2d cycles to apply S gate fixup
- + 1d cycles to shift operating area
- = 17d cycles total (with d=13)
- \approx 17*13us = 221 microseconds per generalized T \approx **4kHz**

Back of the envelope achievable gate count

4kHz generalized T

1 Hz board decay

A thousand generalized Ts would achieve

sufficient signal: O(10%) chance of error, 4 samples per second

sufficient mixing: O(100) sweeps of the operating area

Summary

Current techniques for fault tolerant quantum computation are expensive enough that there is a gap from 10K-100K physical qubits where it's difficult to do anything new and interesting.

Using current error correction techniques, and plausible hardware assumptions, fault-tolerant classically-intractable sampling can be done in 1/4 of a second with 25K physical qubits.

This is 10x fewer qubits than other classically intractable tasks, and lands right in the gap.

Closing remark

The scale of quantum fault tolerance can be daunting...

but it's not the first time scale has been daunting

Source: The Day The Universe Changed (1985) - Episode 1 - It Started with Greeks

Projected physical qubit counts for classically intractable fault tolerant tasks (assuming 5dB error suppression per code distance) (using current techniques)