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Resource estimation for quantum simulation

Why is simulation important?

* "Developing good classical simulations (or even attempting to and
failing) would also help clarify the quantum/classical boundary.”
—Aram Harrow

* Development and debugging of quantum algorithm implementations



How do we build a quantum simulator?

Be very smart and write a lot of code:

* Clever circuit minimizations (Cirq optimizations, Qiskit transpilation...)
* Massive parallelism (QUEST, efforts by IBM, Google, Alibaba...)

* Compression (Wu et al., Supercomputing 2019, BDD-based methods)

* Emulation (ProjectQ)
e Stabilizer formalism (CHP by Aaronson)



Outline: Borrowing classical probabilistic inference
for guantum simulation

* Connection between quantum circuits and Bayesian networks

* Our toolchain for qguantum simulation:
exact Bayesian network inference based on knowledge compilation

* Evaluation of features offered by this approach:
structure extraction & more efficient repeated simulation
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Probabilistic graphical models and an example

Bayesian networks

e AKA directed graphical models,
belief networks

Markov networks @
* AKA undirected graphical models, .
Markov random fields @ving
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Darwiche, A Differential Approach to Inference in Bayesian Networks



Theory: connection between quantum
computing and probabilistic inference

Quantum Probabilistic
program simulation inference

qubits random variables
amplitudes probabilities

Key analogies operator unitary matrices
superposition states
entangled qubits
measurement

conditional probability tables
probability distributions
dependent random variables
sampling & conditioning

amplitudes are complex-valued
Key distinctions squares of amplitudes sum to 1
interference (canceling of amplitudes) possible

probabilities between 0 and 1
probabilities sum to 1
interference impossible
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or Quantum Simulation
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Our toolchain for guantum simulation via
knowledge compilation exact inference

e Quantum circuit (QASM) to complex-valued Bayesian network
e Bayesian network to conjunctive normal form (CNF)
* CNF to arithmetic circuit (AC)

e Exact inference on AC to obtain quantum simulation
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Quantum circuit (QASM) to
complex-valued Bayesian network

Quantum circuit DAG
— Bayesian network topology

Quantum gate unitary matrices
— conditional probability tables

* Bridge to using classical probabilistic inference

e Similar approach used by Boixo et al.
for guantum simulation
(they used Markov undirected networks)
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Bayesian networks to arithmetic circuits

Bayesian network - CNF CNF - arithmetic circuits
* Allows weighted model counting ¢ Reduces the circuit size
* Equivalent to Feynman path sum ¢ ACs are related to BDDs

Many specific techniques, pick Driven by an underlying solver
one that doesn’t assume that needs no special input other
probabilities sum to 1 than the QASM code

* We use UCLA’s ACE tool by * We use UCLA’s C2D tool by

Chavira & Darwiche Darwiche



Our toolchain for guantum simulation via
knowledge compilation exact inference

e Quantum circuit (QASM) to complex-valued Bayesian network
e Bayesian network to conjunctive normal form (CNF)

* CNF to arithmetic circuit (AC)



Exact inference on AC to obtain quantum simulation

* Quantum simulation becomes P

tree traversal on AC

Yipeng Huang, Princeton University
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Exact inference on AC to obtain guantum simulation

e Quantum simulation becomes
tree traversal on AC

* Quantum measurement
outcomes are probabilistic
evidence

Yipeng Huang, Princeton University
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Exact inference on AC to obtain quantum simulation

e Quantum simulation becomes
tree traversal on AC

* Quantum measurement
outcomes are probabilistic
evidence
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Result 1: It works!

With minimal modification, knowledge compilation exact inference can be
repurposed for quantum simulation

* Can accurately simulate Pauli gates, CNOT, CZ, phase kickback, Toffoli, BV,
Grover’s, Shor’s, random circuit sampling

In general, works with exact inference methods
e E.g., variable elimination, weighted model counting

In general, fails with approximate inference methods
e E.g., Sampling, Markov chain Monte Carlo



Result 2: Ability to extract guantum circuit structure

Arithmetic circuit nodes

Random circuit sampling m Grover's Shor's

1.E+08
1.E+07 =
1.E+06 N
1.E+05 | ®
1.E+04 ®
1.E+03 g
1.E+02
0 5000 10000 15000 20000 25000

Conjunctive normal form variables

# qubits  # gates  AC file size

RCS 42 840 82 MB
Grover’s 17 2460 530 MB
Shor’s 13 12247 586 MB

(b) Problem size metrics for largest problem instances.

Y-axis: proportional to
resource intensiveness

e Compilation/inference time,
memory, storage

X-axis: proportional to the
number of qubit states

* Quantum circuit width x depth

Workloads taken from Scaffold



Result 3: More efficient repeated simulation
with different measurement outcomes

Random circuit sampling
* Samples multiple measurement

outcome assignments 0) | H T x1/2 1/} L
0 T

Subject of intense competition 0) {H I T I // A
* Boixo et al. hinted reusing 0) ~Hte{T I v1/2 |/ / I g
results between simulations may 0) |1 I T I y 7

be useful




Simulation time per sample (s)

Result 3: More efficient repeated simulation
with different measurement outcomes
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Random circuitsampling circuitdepth

0.01

First work where partial simulation
results reused for RCS

* Change of sampled measurement
outcome only needs tree re-traversal

Up to about depth 29, ~20x speedup
* Against Boixo et al., on a workstation

Beyond depth 29, no structure to extract



Result 4: More efficient repeated simulation
with different operator matrix parameters

________________________________________ Algorithm 2
QPU CPU
£ —Lb quantum module 1 () . . .
s Toolchain stage ~ Computation time (s)
§ 4:—> quantum module 2 <H2> é - - -
= AN © : Quantum circuit to Bayesian network  0.372 £ 0.005
il e K | Bayesian network to CNF  1.219 = 0.042
§ 3 CNF to arithmetic circuit  12.077 (once)
g —E) quantum module n <HN> Inference on AC 1459 :l: 0350
Table 1: Time cost per toolchain stage for each of 88 iterations.
" Adiust the parameters for the next input state
Peruzzo et al., 2013 VQE Benchmark by Teague Tomesh, Princeton
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Resource estimation for quantum simulation

Why is simulation important?

* "Developing good classical simulations (or even attempting to and
failing) would also help clarify the quantum/classical boundary.”
—Aram Harrow

* Development and debugging of quantum algorithm implementations
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