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Current Quantum Processing Units

• QPU’s are devices that implement the 
principles of digital quantum computing

– Several different maturing technologies

– Small register sizes (1-20)

– Very high 1-qubit gate fidelities (0.999+)

– Moderately high 2-qubit gate fidelities (0.99+)

– Limited connectivity with good addressability

– Low-depth sequences of reliable operations

– Applications limited by gate noise, controllability

• Early stage vendors are offering access

– D-Wave, IBM, IonQ, Google, Rigetti, Alibaba

– Client-server interaction, “cloud” model

– Very loose integration with modern computing

Superconducting chip 

from D-Wave Systems

Superconducting 

chip from IBM

Linear optical chip from 

Univ. Bristol/QET Labs

Superconducting chip 

from Rigetti

Ion trap chip from 

Sandia

Superconducting chip 

from Google
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Metrics

2048

99.9%

N/A

10^(-1)

99.9%

N/A

N/A

IBM

5-79

95%

99-97%

2,000

95%

97%

N/A

IonQ

5-50

95%

99-95%

400

95%

98%

N/A

Measuring Quantum Computer Capabilities

D-Wave

Scale of qubits

Initialization fidelity

Gate set fidelity

Duty cycle

Measurement fidelity

Swap fidelity

Transport fidelity
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Quantum Processing Unit (QPU)

IBM Q “Tokyo”
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Interfacing with the QPU

• IBM’s Qiskit framework 

• Software support for quantum 
computing

– Running experiments on QPUs 
(Terra)

– Simulating quantum circuits (Aer)

– Draw from quantum algorithm 
libraries (Aqua)

– Study and mitigate quantum 
noise (Ignis)

Images: Qiskit Docs
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Example Programs

Qiskit Code QASM Code
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Fine-grain physics models

• Examples: quantum state tomography (QST), 
quantum process tomography (QPT), gate set 
tomography (GST), randomized benchmarking 
(RB)

• Very accurate and detailed description of the 
processor

• Computationally expensive

• Scales poorly with size of QPU

Coarse-grain circuit models

• Noisy circuit descriptions with reduced 
dimensionality

– Empirical approach to inform descriptions of the 
processor

– Varies depending on the experiment

• Approximate and effective description of the 
processor

• Computationally efficient

• Scales well with size of QPU

Methods of Characterizing QPUs
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Experimental Characterization Workflow

Application

Coarse-Grained 
Modeling

Experimental 
Characterization

Model Fitting

Performance 
Testing

• The needs of the application 
determine what components we 
characterize. 

• We run experiments on quantum 
hardware to perform these 
characterizations.

• We use simulation to test selected 
noise models.

• By comparing these simulations to 
the experimental results, we build 
noise models with the best fit to 
the experimental data.

• This process can be performed 
iteratively based on performance 
testing.
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Application Example

Bell state

ۧ|Φ+ =
1

2
ۧ|0102 + ۧ|1112

The Bell state represents an 
example of quantum superposition 
and entanglement in a simple 
circuit that can be implemented on 
existing hardware.

We characterize the pieces of this 
circuit – H, CNOT, and 
measurement – to find a noisy 
composite description of the 
hardware that closely matches 
experimental data.
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Example of Bell state data from “Tokyo”

Probabilities of bit string results out of 8192
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Noise Models

Using a bootstrapping approach, 
we can piece together a 
composite model for this circuit by 
considering smaller circuit 
examples.

Error models:

• Depolarizing error

• Unitary rotations

• Symmetric/asymmetric bit flip

Components:

• Single qubit gates

• Two-qubit gates

• Readout
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Noise Models

Error models:

• Depolarizing error

• Unitary rotations

• Symmetric/asymmetric bit flip

Components:

• Single qubit gates

• Two-qubit gates

• Readout

Starting with initialization and 
measurement, we characterize 
readout.
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Noise Models

• Single qubit gates

• Two-qubit gates

• Readout

• Depolarizing error

• Unitary rotations

• Symmetric/asymmetric bit flip

Using the description of readout 
noise we find from the previous 
example, we find a noise model 
that characterizes H gates.
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Noise Models

• Single qubit gates

• Two-qubit gates

• Readout

• Depolarizing error

• Unitary rotations

• Symmetric/asymmetric bit flip

Finally, we characterize CNOT error 
using a full Bell state circuit.
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Asymmetric Readout (ARO) Parameters

𝑝𝑋 𝑔𝑎𝑡𝑒
𝑜𝑏𝑠 0 =

2𝑝𝑋
3

1 − 𝑝0 + 1 −
2𝑝𝑋
3

𝑝1

𝑝𝑋𝑋 𝑔𝑎𝑡𝑒𝑠
𝑜𝑏𝑠 0 = 1 −

2𝑝𝑋
3

2

+
2𝑝𝑋
3

2

1 − 𝑝0 +
4𝑝𝑋
3

1 −
2𝑝𝑋
3

𝑝1

ۧ|0 0

ۧ|1 1

1-p0

1-p1
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19-qubit averages: p0 = 0.0385 
p1 = 0.0984
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CNOT Depolarizing Parameters

For depolarizing noise, defined as a probability pDP of a Pauli X, Y,
or Z operation, we label results after the depolarizing channel 
with ij and after measurement with asymmetric readout error 
(ARO) as kl; we obtain a value for pDP that makes 𝑝𝑜𝑏𝑠 𝑘𝑙 =
σ𝑖𝑗 𝑝𝑖𝑗 𝑘𝑙 true.

𝑝 𝑖𝑗 = 𝑇𝑟 Π𝑖𝑗𝜖𝐷𝑃 𝑈𝐵𝑆 ۧ|0 𝑈𝐵𝑆|0ۦ
†

, 𝑝𝑖𝑗 𝑘𝑙 = 𝐴𝑅𝑂 𝑝 𝑖𝑗

𝑝00 𝑘𝑙 = 𝑝11 𝑘𝑙 = 𝐴𝑅𝑂
1

2
1 − 𝑝𝐷𝑃

2 + 𝑝𝐷𝑃 1 − 𝑝𝐷𝑃 +
3

2
𝑝𝐷𝑃
2

𝑝01 𝑘𝑙 = 𝑝10 𝑘𝑙 = 𝐴𝑅𝑂 2𝑝𝐷𝑃 1 − 𝑝𝐷𝑃



2020

Example of CNOT Model Fitting

Experimental results for a single 
coupling

• Inject noise into simulations of 
quantum circuits and perform 
measurement

• Compare simulation results to 
experimental results using the 
expression for model error:

𝐸𝑚𝑜𝑑𝑒𝑙 =෍

𝑖

ℎ𝑖
𝑒𝑥𝑝

𝑁
−
ℎ𝑖
𝑠𝑖𝑚

𝑁

2

• Minimize this quantity to 
determine best fit
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Average over all 62: 
pDP = 0.0255
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Numerical Simulations of Quantum Circuits

• Classical computer optimized for 
quantum circuit simulation on site 
at ORNL

– TBs of RAM

– Up to ~40 qubits

• QPU emulator

– Write quantum circuits in AQASM 
language

– Compile to simulator

Image: Atos
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Interfacing with the QLM

• Python control “PyAQASM”

• Create AQASM circuit 
descriptions

• Execute on chosen simulator

– Linear algebra

– Stabilizer

– MPS

– Feynman path integral

– Density matrix

AQASM file example
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GHZ States

n-qubit GHZ for n = {2, 3, …, 20}

ۧ|𝐺𝐻𝑍(𝑛) =
ۧ|0 ⨂𝑛 + ۧ|1 ⨂𝑛

2
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GHZ on Tokyo

“Tokyo” layout at time of data collection.
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GHZ on Tokyo

For n = {2, 3, …, 20}, we map the GHZ circuits onto the chip as 
shown (arrow from control to target).
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3-qubit GHZ results 4-qubit GHZ results

Examples of Experimental Results from QPU
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GHZ on Tokyo

For GHZ states of 
increasing size, 
model error in 
noisy simulation 
increases far less 
dramatically than 
noiseless and 
remains under 3% 
even for the 
largest circuits.
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Conclusions

• Coarse-grained, application-focused noise models can be used to 
predict the performance of NISQ devices.

• Development of these noise models requires few computational 
resources.

– Needs as few as 4 characterization circuits 

– Yields as few as 3 noise parameters

• Coarse-graining is an iterative process driven by required accuracy.

• Future work will include more refined noise models, exploration of other 
applications, and comparisons to other characterization methods.



Thank you



Bonus Slides
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Aer “Basic Device Noise Model”

• Input RB error rates from daily 
calibration and device properties 
from selected backend

• One- and two-qubit gate errors

– Determine thermal relaxation 
error from T1, T2, and gate times

– Add a depolarizing probability 
parameter such that the error 
rates of DP+TR=RB

• Readout error

– Use reported readout error from 
RB protocol as symmetric bit flip 
channel

Code example
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Aer “Basic Device Noise Model”

• Input RB error rates from daily 
calibration and device properties 
from selected backend

• One- and two-qubit gate errors

– Determine thermal relaxation 
error from T1, T2, and gate times

– Add a depolarizing probability 
parameter such that the error 
rates of DP+TR=RB

• Readout error

– Use reported readout error from 
RB protocol as symmetric bit flip 
channel

Code example

DP=RB


