

Mitigating readout noise

FBM, ZZ, MO

Introduction

POVMs

Noise model and mitigation

Quantum Detector Tomography

Applicability of mitigation

Deviations from noise model

Finite-size statistics

Applications on IBM's quantum device

QST and QPT Quantum algorithms Probability distribution

Summary and open problems

Summary Open problem

Mitigation of readout noise by classical post-processing based on Quantum Detector Tomography

Filip B. Maciejewski¹, Zoltán Zimborás², Michał Oszmaniec³

¹Faculty of Physics, University of Warsaw

²Wigner Research Centre for Physics of the Hungarian Academy of Sciences

³Institute of Theoretical Physics and Astrophysics, National Quantum Information Centre, Faculty of Mathematics, Physics and Informatics, University of Gdansk

> Quantum Resource Estimation (QRE2019) June 22nd, 2019

Table of Contents

Mitigating readout noise FBM, ZZ, MO

Introduction

POVMs

Noise model and mitigation Quantum Detector Tomography

Applicability o mitigation

Deviations from noise model

Applications on IBM's quantum device

QST and QPT Quantum algorithms Probability distributions

Summary and open problems Summary Open problems Introduction POVMs

> Noise model and mitigation Quantum Detector Tomography

 Applicability of mitigation Deviations from noise model Finite-size statistics

- 3 Applications on IBM's quantum device QST and QPT Quantum algorithms Probability distributions
- Summary and open problems
 Summary
 Open problems

Table of Contents

Mitigating readout noise FBM, ZZ, MO

Introduction

POVMs

Noise model and mitigation Quantum Detector

Applicability o mitigation

Deviations from noise model

Applications on IBM's quantum device

QST and QPT Quantum algorithms Probability distributions

Summary and open problems

Open problems

Introduction POVMs

Noise model and mitigation Quantum Detector Tomography

pplicability of mitigation Deviations from noise model Finite-size statistics

- Applications on IBM's quantum device QST and QPT Quantum algorithms Probability distributions
- Summary and open problems Summary Open problems

Mitigating readout noise

FBM, ZZ, MO

Introduction

POVMs

Noise model and mitigation

Quantum Detector Tomography

Applicability of mitigation

Deviations from noise model

Finite-size statistics

Applications on IBM's quantum device

QST and QPT Quantum algorithms Probability distribution

Summary and open problems

Summary Open probler • POVM (Positive Operator-Valued Measure) **M** with *n*-outcomes

$$\mathbf{M} = (M_1, M_2, \dots, M_n), \qquad \forall i \ M_i \ge 0, \qquad \sum_{i=1}^n M_i = \mathbb{1}.$$

n

• **Projective** measurement $\mathbf{P} = (P_1, P_2, \dots, P_n)$, with additional requirements

$$\forall_{i,j} P_i P_j = \delta_{i,j} P_i$$

• Born's rule

$$p(i|\rho,\mathbf{M}) = \operatorname{Tr}(\rho M_i).$$

ACULTY OF Noise model...

Mitigating readout noise FBM, ZZ, MO

Introduction

POVM:

Noise model and mitigation

Quantum Detector Tomography

Applicability of mitigation

Deviations from noise model

Finite-size statistics

Applications on IBM's quantum device

QST and QPT Quantum algorithms Probability distribution

Summary and open problems

Summary Open proble • We are interested in 'classical' **noise model**, in which noisy detector **M** is related to ideal detector **P** by **stochastic, invertible map** Λ

ACULTY OF Noise model...

Mitigating readout noise FBM, ZZ, MO

Introduction

POVMs

Noise model and mitigation

Quantum Detector Tomography

Applicability of mitigation

Deviations from noise model

Finite-size statistics

Applications on IBM's quantum device

QST and QPT Quantum algorithms Probability distributio

Summary and open problems

Summary Open probler • We are interested in 'classical' **noise model**, in which noisy detector **M** is related to ideal detector **P** by **stochastic, invertible map** Λ

linearity of Born's rule

 \downarrow

ACULTY OF Noise model...

Mitigating readout noise FBM, ZZ, MO

Introduction

POVMs

Noise model and mitigation

Quantum Detector Tomography

Applicability of mitigation

Deviations from noise model

Finite-size statistics

Applications on IBM's quantum device

QST and QPT Quantum algorithms Probability distributio

Summary and open problems

Summary Open proble • We are interested in 'classical' **noise model**, in which noisy detector **M** is related to ideal detector **P** by **stochastic, invertible map** Λ

ACULTY OF Noise model...

Mitigating readout noise FBM, ZZ, MO

Introduction

POVMs

Noise model and mitigation

Quantum Detector Tomography

Applicability of mitigation

Deviations from noise model

Finite-size statistics

Applications on IBM's quantum device

QST and QPT Quantum algorithms Probability distribution

Summary and open problems

Summary Open problems • We are interested in 'classical' **noise model**, in which noisy detector **M** is related to ideal detector **P** by **stochastic, invertible map** Λ

• So such noise is equivalent to classical post-processing of statistics!

Mitigating readout noise

FBM, ZZ, MO

Introduction

POVMs

Noise model and mitigation

Quantum Detector Tomography

Applicability of mitigation

Deviations from noise model

Finite-size statistics

Applications on IBM's quantum device

QST and QPT Quantum algorithms Probability distributions

Summary and open problems

Summary Open proble

Mitigating readout noise

FBM, ZZ, MO

Introduction

POVMs

Noise model and mitigation

Quantum Detector Tomography

Applicability of mitigation

Deviations from noise model

Finite-size statistics

Applications on IBM's quantum device

QST and QPT Quantum algorithms Probability distribution

Summary and open problems

Summary Open probler

• Simple recipe for correction

$$\Lambda^{-1}\mathbf{p}_{\mathsf{exp}} = \mathbf{p}_{\mathsf{ideal}},$$

Mitigating readout noise

FBM, ZZ, MO

Introduction

POVMs

Noise model and mitigation

Quantum Detector Tomography

Applicability of mitigation

Deviations from noise model

Finite-size statistics

Applications on IBM's quantum device

QST and QPT Quantum algorithms Probability distribution

Summary and open problems

Open problems

• Simple recipe for correction

$$\Lambda^{-1} \mathbf{p}_{\mathsf{exp}} = \mathbf{p}_{\mathsf{ideal}},$$

provided we know Λ .

Mitigating readout noise

FBM, ZZ, MO

Introduction

POVMs

Noise model and mitigation

Quantum Detector Tomography

Applicability of mitigation

Deviations from noise model

Finite-size statistics

Applications on IBM's quantum device

QST and QPT Quantum algorithms Probability distribution

Summary and open problems

Open problems

• Simple recipe for correction

$$\Lambda^{-1} \mathbf{p}_{\mathsf{exp}} = \mathbf{p}_{\mathsf{ideal}},$$

provided we know $\Lambda.$ How to get to know it?

Mitigating readout noise

FBM, ZZ, MO

Introduction

POVMs

Noise model and mitigation

Quantum Detector Tomography

Applicability of mitigation

Deviations from noise model

Finite-size statistics

Applications on IBM's quantum device

QST and QPT Quantum algorithms Probability distribution

Summary and open problems

Summary Open proble

• To know Λ , we need to know **actual POVM** describing our **detector** $\mathbf{M} = \Lambda \mathbf{P}$.

Mitigating readout noise

FBM, ZZ, MO

Introduction

POVMs

Noise model and mitigation

Quantum Detector Tomography

Applicability of mitigation

Deviations from noise model

Finite-size statistics

Applications on IBM's quantum device

QST and QPT Quantum algorithms Probability distribution

Summary and open problems

Summary Open problem

- To know A, we need to know actual POVM describing our detector $\mathbf{M} = A\mathbf{P}$.
- **General idea** of QDT put in **different quantum states** which form (possibly overcomplete) operator basis and use Born's rule

Mitigating readout noise

FBM, ZZ, MO

Introduction

POVMs

Noise model and mitigation

Quantum Detector Tomography

Applicability of mitigation

Deviations from noise model

Finite-size statistics

Applications on IBM's quantum device

QST and QPT Quantum algorithms Probability distribution

Summary and open problems

Summary Open probler

- To know Λ , we need to know **actual POVM** describing our **detector** $\mathbf{M} = \Lambda \mathbf{P}$.
- General idea of QDT put in different quantum states which form (possibly overcomplete) operator basis and use Born's rule

$$p(i|\rho_j, \mathbf{M}) = \operatorname{Tr}(\rho_j M_i)$$

Mitigating readout noise

FBM, ZZ, MO

Introduction

POVMs

Noise model and mitigation

Quantum Detector Tomography

Applicability of mitigation

Deviations from noise model

Finite-size statistics

Applications on IBM's quantum device

QST and QPT Quantum algorithms Probability distribution

Summary and open problems

Summary Open proble

- To know A, we need to know actual POVM describing our detector $\mathbf{M}=\Lambda\mathbf{P}.$
- **General idea** of QDT put in **different quantum states** which form (possibly overcomplete) operator basis and use Born's rule

$$p(i|\rho_j, \mathbf{M}) = \operatorname{Tr}(\rho_j M_i)$$

• Assumptions – perfect state preparation and infinite statistics.

Mitigating readout noise

FBM, ZZ, MO

Introduction

POVMs

Noise model and mitigation

Quantum Detector Tomography

Applicability of mitigation

Deviations from noise model

Finite-size statistics

Applications on IBM's quantum device

QST and QPT Quantum algorithms Probability distribution

Summary and open problems Summary Open problems

- To know Λ , we need to know **actual POVM** describing our **detector** $\mathbf{M} = \Lambda \mathbf{P}$.
- **General idea** of QDT put in **different quantum states** which form (possibly overcomplete) operator basis and use Born's rule

$$p(i|\rho_j, \mathbf{M}) = \operatorname{Tr}(\rho_j M_i)$$

- Assumptions perfect state preparation and infinite statistics.
- **Complexity** at least 4ⁿ input states... Comment on that at the end of presentation!

FACULTY OF PHYSICS Correction of statistics

Mitigating readout noise

FBM, ZZ, MO

Introduction

POVMs

Noise model and mitigation

Quantum Detector Tomography

Applicability of mitigation

Deviations from noise model

Finite-size statistics

Applications on IBM's quantum device

QST and QPT Quantum algorithms Probability distributions

Summary and open problems

Summary Open proble • Let's look at real data.

FACULTY OF Correction of statistics

Mitigating readout noise FBM, ZZ, MO

- Let's look at real data.
- Reminder ideal single-qubit measurement in computational basis should be

.

$${f P}=(|0
angle\langle 0|,|1
angle\langle 1|)=$$

$$\left(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right)$$

.

stochastic map will preserve diagonality!

POV/Me

Noise model and mitigation

Quantum Detector Tomography

Applicability of mitigation

Deviations from noise model

Finite-size statistics

Applications on IBM's quantum device

QST and QPT Quantum algorithms Probability distributio

Summary and open problems

Summary Open proble

FACULTY OF **Correction of statistics** PHYSICS

Mitigating

- Let's look at real data.
- Reminder ideal single-qubit measurement in computational basis should be

$$\mathbf{P} = (|0\rangle\langle 0|, |1\rangle\langle 1|) = \underbrace{\left(\begin{bmatrix} 1 & 0\\ 0 & 0\end{bmatrix}, \begin{bmatrix} 0 & 0\\ 0 & 1\end{bmatrix}\right)}_{\text{stochastic map will preserve diagonality!}}$$

• Yesterday around 2PM, IBM's qubit number 2 looked like this:

$$\mathbf{M} = \underbrace{\left(\begin{bmatrix} 0.833 & -0.001i \\ 0.001i & 0.205 \end{bmatrix}, \begin{bmatrix} 0.167 & 0.001i \\ -0.001i & 0.795 \end{bmatrix} \right)}_{\text{Transmission}}$$

non-zero off-diagonal elements \rightarrow coherent errors

.

readout noise

FBM, ZZ, MO

Noise model and

Quantum Detector Tomography

FACULTY OF Correction of statistics

Mitigating readout noise FBM, ZZ, MO

- Let's look at real data.
- Reminder ideal single-qubit measurement in computational basis should be

$$\mathbf{P} = (|0\rangle\langle 0|, |1\rangle\langle 1|) = \underbrace{\left(\begin{bmatrix} 1 & 0\\ 0 & 0\end{bmatrix}, \begin{bmatrix} 0 & 0\\ 0 & 1\end{bmatrix}\right)}_{\text{stochastic map will preserve diagonality!}}$$

.

• Yesterday around 2PM, IBM's qubit number 2 looked like this:

$$\mathbf{M} = \underbrace{\left(\begin{bmatrix} 0.833 & -0.001i \\ 0.001i & 0.205 \end{bmatrix}, \begin{bmatrix} 0.167 & 0.001i \\ -0.001i & 0.795 \end{bmatrix} \right)}_{\text{non-zero off-diagonal elements} \rightarrow \text{ coherent errors}}$$

so our noise model is quite good, but not perfect.

Introduction

POVMs

Noise model and mitigation

Quantum Detector Tomography

Applicability of mitigation

Deviations from noise model

Finite-size statistics

Applications on IBM's quantum device

QST and QPT Quantum algorithms Probability distribution

Summary and open problems

Summary Open problems

FACULTY OF Correction of statistics

Mitigating readout noise FBM, ZZ, MO

- Let's look at real data.
- Reminder ideal single-qubit measurement in computational basis should be

$$\mathbf{P} = (|0\rangle\langle 0|, |1\rangle\langle 1|) = \underbrace{\left(\begin{bmatrix} 1 & 0\\ 0 & 0\end{bmatrix}, \begin{bmatrix} 0 & 0\\ 0 & 1\end{bmatrix}\right)}_{\text{stochastic map will preserve diagonality!}}$$

.

• Yesterday around 2PM, IBM's qubit number 2 looked like this:

$$\mathbf{M} = \underbrace{\left(\begin{bmatrix} 0.833 & -0.001i \\ 0.001i & 0.205 \end{bmatrix}, \begin{bmatrix} 0.167 & 0.001i \\ -0.001i & 0.795 \end{bmatrix} \right)}_{\text{non-zero off-diagonal elements} \rightarrow \text{ coherent errors}}$$

so our noise model is **quite good, but not perfect**. How **coherent errors** affect correction?

Introduction

POVMs

Noise model and mitigation

Quantum Detector Tomography

Applicability of mitigation

Deviations from noise model

Finite-size statistics

Applications on IBM's quantum device

QST and QPT Quantum algorithms Probability distribution

Summary and open problems

Summary Open problems

Table of Contents

Mitigating readout noise FBM, ZZ, MO

Introduction

POVMs

Noise model and mitigation Quantum Detector Tomography

Applicability of mitigation

Deviations from noise model

Finite-size statistics

Applications on IBM's quantum device

QST and QPT Quantum algorithms Probability distributions

Summary and open problems Summary

Open problems

Introduction

Noise model and mitigation Quantum Detector Tomography

Applicability of mitigation

Deviations from noise model Finite-size statistics

 Applications on IBM's quantum device QST and QPT Quantum algorithms Probability distributions

Summary and open problems Summary Open problems

Mitigating readout noise

FBM, ZZ, MO

Introduction

POVMs

Noise model and mitigation

Quantum Detector Tomography

Applicability of mitigation

Deviations from noise model

Finite-size statistics

Applications on IBM's quantum device

QST and QPT Quantum algorithms Probability distributio

Summary and open problems

Summary Open proble

• POVM ${\bf M}$ with coherent errors, may be decomposed as

Mitigating readout noise

FBM, ZZ, MO

Introduction

POVMs

Noise model and mitigation

Quantum Detector Tomography

Applicability of mitigation

Deviations from noise model

Finite-size statistics

Applications on IBM's quantum device

QST and QPT Quantum algorithms Probability distribution

Summary and open problems

Summary Open probler • POVM **M** with coherent errors, may be decomposed as

FACULTY OF Non-classical noise

Mitigating readout noise

FBM, ZZ, MO

Introduction

POVMs

Noise model and mitigation

Quantum Detector Tomography

Applicability of mitigation

Deviations from noise model

Finite-size statistics

Applications on IBM's quantum device

QST and QPT Quantum algorithms Probability distribution

Summary and open problems

Summary Open problem

¹M. Navascués and S. Popescu, Phys. Rev. Lett. 112, 140502 (2014).

FACULTY OF Non-classical noise

Mitigating readout noise

FBM, ZZ, MO

Introduction

POVMs

Noise model and mitigation

Quantum Detector Tomography

Applicability of mitigation

Deviations from noise model

Finite-size statistics

Applications on IBM's quantum device

QST and QPT Quantum algorithms Probability distribution

Summary and open problems

Summary Open problem

• Total Variation (TV) distance between probability distributions

$$D_{\mathcal{T}\mathcal{V}}\left(\mathbf{p},\mathbf{q}
ight)\coloneqqrac{1}{2}||\mathbf{p}-\mathbf{q}||_{1}=rac{1}{2}\sum_{i=1}^{n}|p_{i}-q_{i}|\;,$$

¹M. Navascués and S. Popescu, Phys. Rev. Lett. 112, 140502 (2014).

FACULTY OF Non-classical noise

Mitigating readout noise

FBM, ZZ, MO

Introduction

POVMs

Noise model and mitigation

Quantum Detector Tomography

Applicability of mitigation

Deviations from noise model

Finite-size statistics

Applications on IBM's quantum device

QST and QPT Quantum algorithms Probability distribution

Summary and open problems

Open problems

• Total Variation (TV) distance between probability distributions

$$D_{\mathcal{T}\mathcal{V}}\left(\mathbf{p},\mathbf{q}
ight)\coloneqqrac{1}{2}||\mathbf{p}-\mathbf{q}||_{1}=rac{1}{2}\sum_{i=1}^{n}|p_{i}-q_{i}|\;,$$

• Related **operational distance** between quantum measurements¹ $D_{op}(\mathbf{M}, \mathbf{N}) = \max_{\rho} D_{TV}(\mathbf{p}_{\mathbf{M}}, \mathbf{p}_{\mathbf{N}}).$

¹M. Navascués and S. Popescu, Phys. Rev. Lett. 112, 140502 (2014).

Non-classical noise

Mitigating readout noise

FBM, ZZ, MO

Introduction

POVMs

Noise model and mitigation

Quantum Detector Tomography

Applicability of mitigation

Deviations from noise model

Finite-size statistics

Applications on IBM's quantum device

QST and QPT Quantum algorithms Probability distributio

Summary and open problems Summary

Open problems

• Total Variation (TV) distance between probability distributions

$$D_{TV}\left(\mathbf{p},\mathbf{q}
ight)\coloneqqrac{1}{2}||\mathbf{p}-\mathbf{q}||_{1}=rac{1}{2}\sum_{i=1}^{n}|p_{i}-q_{i}|\;,$$

- Related **operational distance** between quantum measurements¹ $D_{op}(\mathbf{M}, \mathbf{N}) = \max_{\rho} D_{TV}(\mathbf{p}_{\mathbf{M}}, \mathbf{p}_{\mathbf{N}}).$
- Now we can **upper bound** interesting distance

ACULTY OF Non-classical errors

Mitigating readout noise

FBM, ZZ, MO

Introduction

POVMs

Noise model and mitigation

Quantum Detecto Tomography

Applicability of mitigation

Deviations from noise model

Finite-size statistics

Applications on IBM's quantum device

QST and QPT Quantum algorithms Probability distributio

Summary and open problems

Summary Open proble So we have

 $D_{TV}\left(\Lambda^{-1}\mathbf{p}_{exp},\mathbf{p}_{ideal}\right) \leq$ $D_{op}(\mathbf{M}, \Lambda \mathbf{P})$ Х $1 \rightarrow 1$

How far with correction?

Norm of 'correction matrix'

magnitutude of non-classicity

 $=: \delta.$

ACULTY OF Non-classical errors

Mitigating readout noise

FBM, ZZ, MO

Introduction

POVMs

Noise model and mitigation

Quantum Detecto Tomography

Applicability of mitigation

Deviations from noise model

Finite-size statistics

Applications on IBM's quantum device

QST and QPT Quantum algorithms Probability distributio

Summary and open problems

Summary Open probler

So we have

$$\underbrace{D_{TV}\left(\Lambda^{-1}\mathbf{p}_{exp},\mathbf{p}_{ideal}\right)}_{\text{How far with correction?}} \leq \underbrace{||\Lambda^{-1}||_{1\to 1}}_{\text{Norm of 'correction matrix'}} \times \underbrace{D_{op}\left(\mathbf{M},\Lambda\mathbf{P}\right)}_{\text{magnitutude of non-classicity}} =: \delta.$$

• Naturally, we can compare it to non-corrected case

 $D_{TV}(\mathbf{p}_{exp},\mathbf{p}_{ideal}) \leq$ $D_{op}\left(\mathbf{M},\mathbf{P}\right)$

How far without correction?

magnitude of whole noise

.

ACULTY OF Non-classical errors

Mitigating readout noise

FBM, ZZ, MO

Introduction

POVMs

Noise model and mitigation

Quantum Detecto Tomography

Applicability of mitigation

Deviations from noise model

Finite-size statistics

Applications on IBM's quantum device

QST and QPT Quantum algorithms Probability distribution

Summary and open problems Summary Open problems

So we have

$$\underbrace{D_{TV}\left(\Lambda^{-1}\mathbf{p}_{exp},\mathbf{p}_{ideal}\right)}_{\text{How far with correction?}} \leq \underbrace{||\Lambda^{-1}||_{1\to 1}}_{\text{Norm of 'correction matrix'}} \times \underbrace{D_{op}\left(\mathbf{M},\Lambda\mathbf{P}\right)}_{\text{magnitutude of non-classicity}} =: \delta.$$

• Naturally, we can compare it to non-corrected case

 $D_{TV}(\mathbf{p}_{exp},\mathbf{p}_{ideal}) \leq$ $D_{op}\left(\mathbf{M},\mathbf{P}\right)$

How far without correction?

magnitude of whole noise

.

• Let's look at real data...

FACULTY OF Non-classical errors

Noise model and

model

FACULTY OF Non-classical errors

Open problems

ACULTY OF Non-classical errors

• So it looks quite good for our correction...

ACULTY OF Non-classical errors

• So it looks quite good for our correction... if we have infinite statistics.
ACULTY OF Non-classical errors

• So it looks quite good for our correction... if we have infinite statistics. And what if we do not?

FACULTY OF Finite-size statistics

Mitigating readout noise

FBM, ZZ, MO

Introduction

POVMs

Noise model and mitigation

Quantum Detector Tomography

Applicability of mitigation

Deviations from noise model

Finite-size statistics

Applications on IBM's quantum device

QST and QPT Quantum algorithms Probability distributions

Summary and open problems

Summary Open problems • In real experiments we estimate statistics

²G. S. S. V. M. J. W. Tsachy Weissman, Erik Ordentlich, Technical Report HPL-2003-97R1, Hewlett-Packard Labs (2003).

FACULTY OF FINITE-size statistics

Mitigating readout noise

FBM, ZZ, MO

Introduction

POVMs

Noise model and mitigation

Quantum Detector Tomography

Applicability of mitigation

Deviations from noise model

Finite-size statistics

Applications on IBM's quantum device

QST and QPT Quantum algorithms Probability distribution

Summary and open problems

Summary Open problems • In real experiments we estimate statistics

• Quality of estimation may be quantified by

$$1 - \Pr_{\mathsf{wrong}} \coloneqq \Pr\left(D_{\mathcal{TV}}\left(\mathbf{p}_{exp}^{est}, \mathbf{p}_{exp}\right) \leq \epsilon^*\right)$$

²G. S. S. V. M. J. W. Tsachy Weissman, Erik Ordentlich, Technical Report HPL-2003-97R1, Hewlett-Packard Labs (2003).

FACULTY OF FINITE-size statistics

Mitigating readout noise

FBM, ZZ, MO

Introduction

POVMs

Noise model and mitigation

Quantum Detector Tomography

Applicability of mitigation

Deviations from noise model

Finite-size statistics

Applications on IBM's quantum device

QST and QPT Quantum algorithms Probability distribution

Summary and open problems

Summary Open problems • In real experiments we estimate statistics

• Quality of estimation may be quantified by

$$1 - \Pr_{\mathsf{wrong}} \coloneqq \Pr\left(D_{\mathcal{TV}}\left(\mathbf{p}_{exp}^{est}, \mathbf{p}_{exp}
ight) \le \epsilon^*
ight).$$

 If we choose some acceptable probability Prwrong, perform N runs of experiments for n-outcome measurement, we can get upper bound²

$$D_{TV}\left(\mathbf{p}_{exp}^{est},\mathbf{p}_{exp}
ight) \leq \sqrt{rac{\log\left(2^n-2
ight) - \log\left(\mathrm{Pr}_{\mathsf{wrong}}
ight)}{2N}} \eqqcolon \epsilon^* \; .$$

²G. S. S. V. M. J. W. Tsachy Weissman, Erik Ordentlich, Technical Report HPL-2003-97R1, Hewlett-Packard Labs (2003).

FBM, ZZ, MO

Introduction

POVMs

Noise model and mitigation

Quantum Detector Tomography

Applicability of mitigation

Deviations from noise model

Finite-size statistics

Applications on IBM's quantum device

QST and QPT Quantum algorithms Probability distribution

Summary and open problems

Summary Open proble

• Going back to our correction...

FACULTY OF FINITE-size statistics

Mitigating readout noise

FBM, ZZ, MO

Introduction

POVMs

Noise model and mitigation

Quantum Detector Tomography

Applicability of mitigation

Deviations from noise model

Finite-size statistics

Applications on IBM's quantum device

QST and QPT Quantum algorithms Probability distribution

Summary and open problems

• Going back to our correction...

 $D_{TV}\left(\Lambda^{-1}\mathbf{p}_{exp}^{est},\mathbf{p}_{ideal}\right) \leq ||\Lambda^{-1}||_{1\to 1}D_{op}\left(\mathbf{M},\Lambda\mathbf{P}\right) + ||\Lambda^{-1}||_{1\to 1}\epsilon^* \eqqcolon \delta^*.$ statistical errors corrected estimated PDF coherent errors

FACULTY OF FINITE-SIZE STATISTICS

Mitigating readout noise

FBM, ZZ, MO

Introduction

POVMs

Noise model and mitigation

Quantum Detector Tomography

Applicability of mitigation

Deviations from noise model

Finite-size statistics

Applications on IBM's quantum device

QST and QPT Quantum algorithms Probability distribution

Summary and open problems

Summary Open probler

• Going back to our correction...

$$\underbrace{D_{TV}\left(\Lambda^{-1}\mathbf{p}_{exp}^{est},\mathbf{p}_{ideal}\right)}_{\text{corrected estimated PDF}} \leq \underbrace{||\Lambda^{-1}||_{1\to 1}D_{op}\left(\mathbf{M},\Lambda\mathbf{P}\right)}_{\text{coherent errors}} + \underbrace{||\Lambda^{-1}||_{1\to 1}\epsilon^{*}}_{\text{statistical errors}} =:\delta^{*}.$$

• Once again we can compare it with non-corrected scenario

$$\underbrace{D_{TV}\left(\mathbf{p}_{exp}^{est}, \mathbf{p}_{ideal}\right)}_{\text{non-corrected estimated PDF}} \leq \underbrace{D_{op}\left(\mathbf{M}, \mathbf{P}\right)}_{\text{whole readout error}} + \underbrace{\epsilon^{*}}_{\text{statistical errors}} =: D_{op}^{*}\left(\mathbf{M}, \mathbf{P}\right)$$

FACULTY OF HYSICS Finite-size statistics

Mitigating readout noise

FBM, ZZ, MO

Introduction

POVMs

Noise model and mitigation

Quantum Detector Tomography

Applicability of mitigation

Deviations from nois model

Finite-size statistics

Applications on IBM's quantum device

QST and QPT Quantum algorithms Probability distribution

Summary and open problems ^{Summary}

Open problems

• Going back to our correction...

$$\underbrace{D_{TV}\left(\Lambda^{-1}\mathbf{p}_{exp}^{est},\mathbf{p}_{ideal}\right)}_{\text{corrected estimated PDF}} \leq \underbrace{||\Lambda^{-1}||_{1\to 1}D_{op}\left(\mathbf{M},\Lambda\mathbf{P}\right)}_{\text{coherent errors}} + \underbrace{||\Lambda^{-1}||_{1\to 1}\epsilon^{*}}_{\text{statistical errors}} =:\delta^{*}.$$

• Once again we can compare it with non-corrected scenario

$$\underbrace{D_{TV}\left(\mathbf{p}_{exp}^{est}, \mathbf{p}_{ideal}\right)}_{\text{non-corrected estimated PDF}} \leq \underbrace{D_{op}\left(\mathbf{M}, \mathbf{P}\right)}_{\text{whole readout error}} + \underbrace{\epsilon^{*}}_{\text{statistical errors}} =: D_{op}^{*}\left(\mathbf{M}, \mathbf{P}\right)$$

• Let's look at real data...

Contraction Overall error

Mitigating readout noise

readout noise

FBM, ZZ, MO

Introduction

POVMs

Noise model and mitigation

Quantum Detector Tomography

Applicability of mitigation

Deviations from noise model

Finite-size statistics

Applications on IBM's quantum device

QST and QPT Quantum algorithms Probability distributio

Summary and open problems

• So our correction still might work...

- So our correction still might work...
- Let's check it in practice...

Table of Contents

Mitigating readout noise FBM, ZZ, MO

Introduction

POVMs

Noise model and mitigation Quantum Detector

Applicability o mitigation

Deviations from noise model

Finite-size statistics

Applications on IBM's quantum device

QST and QPT Quantum algorithms Probability distributions

Summary and open problems

Summary Open problems Introduction

Noise model and mitigation Quantum Detector Tomography

Applicability of mitigation Deviations from noise model Finite-size statistics

3 Applications on IBM's quantum device QST and QPT Quantum algorithms Probability distributions

Summary and open problems Summary Open problems

FACULTY OF PHYSICS Correction scheme

FBM, ZZ, MO

Introduction

POVMs

Noise model and mitigation

Quantum Detector Tomography

Applicability of mitigation

Deviations from noise model

Finite-size statistics

Applications on IBM's quantum device

QST and QPT Quantum algorithms Probability distribution:

Summary and open problems Summary

Open problems

ACULTY OF WHYSICS QST and QPT

Mitigating readout noise

FBM, ZZ, MO

Introduction

POVMs

Noise model and mitigation

Quantum Detector Tomography

Applicability of mitigation

Deviations from noise model

Finite-size statistics

Applications on IBM's quantum device

QST and QPT

Quantum algorithms Probability distributions

Summary and open problems

Summary Open proble • **Single qubit** tasks – Quantum State Tomography and Quantum Process Tomography.

FACULTY OF QST and QPT

Mitigating readout noise

FBM, ZZ, MO

Introduction

- POVMs
- Noise model and mitigation
- Quantum Detector Tomography

Applicability of mitigation

- Deviations from noise model
- Finite-size statistics

Applications on IBM's quantum device

QST and QPT

Quantum algorithms Probability distributions

Summary and open problems

- **Single qubit** tasks Quantum State Tomography and Quantum Process Tomography.
- For two qubits Quantum State Tomography.

FACULTY OF QST and QPT

Mitigating readout noise

FBM, ZZ, MO

Introduction

- POVMs
- Noise model and mitigation
- Quantum Detector Tomography

Applicability of mitigation

- Deviations from noise model
- Finite-size statistics

Applications on IBM's quantum device

QST and QPT

Quantum algorithms Probability distributions

Summary and open problems

- **Single qubit** tasks Quantum State Tomography and Quantum Process Tomography.
- For two qubits Quantum State Tomography.
- Figures of merit

FACULTY OF PHYSICS Single-qubit QST

FBM, ZZ, MO

Introduction

POVMs

Noise model and mitigation

Quantum Detector Tomography

Applicability of mitigation

Deviations from noise model

Finite-size statistics

Applications on IBM's quantum device

QST and QPT

Quantum algorithms Probability distributions

Summary and open problems

FACULTY OF Single-qubit QPT

Mitigating readout noise

FBM, ZZ, MO

Introduction

POVMs

Noise model and mitigation

Quantum Detector Tomography

Applicability of mitigation

Deviations from noise model

Finite-size statistics

Applications on IBM's quantum device

QST and QPT

Quantum algorithms Probability distributions

Summary and open problems

Two-qubit QST

Mitigating readout noise

FBM, ZZ, MO

Introduction

POVMs

Noise model and mitigation

Quantum Detector Tomography

Applicability of mitigation

Deviations from noise model

Finite-size statistics

Applications on IBM's quantum device

QST and QPT

Quantum algorithms Probability distributions

Summary and open problems

Quantum algorithms

Mitigating readout noise

FBM, ZZ, MO

Introductio

POVMs

Noise model and mitigation

Quantum Detector Tomography

Applicability of mitigation

Deviations from noise model

Finite-size statistics

Applications on IBM's quantum device

QST and QPT

Quantum algorithms Probability distributions

Summary and open problems

Summary Open problems Quantum algorithms – Grover's search³ (simple oracle) and Bernstein-Vaziriani⁴ (hidden string).

³L. K. Grover, quant-ph/9605043 (1996),

⁴E. Bernstein and U. Vazirani, in Proc. of the Twenty-Fifth Annual ACM Symposium on Theory of Computing (STOC '93) (1993) p. 11–20. ⁵P.J. Coles, *et al*, arXiv:1804.03719 (2018),

Quantum algorithms

Mitigating readout noise

FBM, ZZ, MO

Introductio

POVMs

Noise model and mitigation

Quantum Detector Tomography

Applicability of mitigation

Deviations from noise model

Finite-size statistics

Applications on IBM's quantum device

QST and QPT

Quantum algorithms Probability distributions

Summary and open problems

Summary Open problems

- Quantum algorithms Grover's search³ (simple oracle) and Bernstein-Vaziriani⁴ (hidden string).
- Implementation on three qubits, measurement performed on two qubits⁵.

³L. K. Grover, quant-ph/9605043 (1996),

⁴E. Bernstein and U. Vazirani, in Proc. of the Twenty-Fifth Annual ACM Symposium on Theory of Computing (STOC '93) (1993) p. 11–20. ⁵P.J. Coles. *et al.* arXiv:1804.03719 (2018).

ACULTY OF Quantum algorithms

Mitigating readout noise

FBM, ZZ, MO

Introductio

- POVMs
- Noise model and mitigation
- Quantum Detector Tomography

Applicability of mitigation

- Deviations from noise model
- Finite-size statistics

Applications on IBM's quantum device

QST and QPT

Quantum algorithms Probability distributions

Summary and open problems ^{Summary}

- Quantum algorithms Grover's search³ (simple oracle) and Bernstein-Vaziriani⁴ (hidden string).
- Implementation on three qubits, measurement performed on two qubits⁵.
- Figure of merit **probability of correct outcome** without and with correction.

³L. K. Grover, quant-ph/9605043 (1996),

⁴E. Bernstein and U. Vazirani, in Proc. of the Twenty-Fifth Annual ACM Symposium on Theory of Computing (STOC '93) (1993) p. 11–20. ⁵P.J. Coles. *et al.* arXiv:1804.03719 (2018).

FACULTY OF **Quantum algorithms**

FBM, ZZ, MO

Noise model and

mitigation Quantum Detector Tomography Applicability of	Algorithm	Standard	$\underbrace{Corr(1q\otimes 1q)}_{non-correlated}$	$\underbrace{\operatorname{Corr}(2q)}_{\operatorname{correlated}}$	
Deviation Deviations from noise model Finite-size statistics	Grover's BV	$\begin{array}{c} 0.58 \pm 0.01 \\ 0.55 \pm 0.02 \end{array}$	$\begin{array}{c} 0.70\pm0.02\\ 0.63\pm0.02\end{array}$	$\begin{array}{c} 0.79 \pm 0.02 \\ 0.61 \pm 0.02 \end{array}$	

QST and QPT Quantum algorithms

FACULTY OF FIVE-qubit probablity distributions

Mitigating readout noise

FBM, ZZ, MO

Introduction

POVMs

Noise model and mitigation

Quantum Detector Tomography

Applicability of mitigation

Deviations from noise model

Finite-size statistics

Applications on IBM's quantum device

QST and QPT

Quantum algorithms

Probability distributions

Summary and open problems

Summary Open proble • Five-qubit task of implementing certain probability distributions.

FACULTY OF WYSICS Five-qubit probablity distributions

Mitigating readout noise

FBM, ZZ, MO

Introduction

- POVMs
- Noise model and mitigation
- Quantum Detector Tomography

Applicability of mitigation

- Deviations from noise model
- Finite-size statistics

Applications on IBM's quantum device

- QST and QPT
- Quantum algorithms
- Probability distributions

Summary and open problems

- Five-qubit task of implementing certain probability distributions.
- Uniform Hadamard gates on all qubits.

FACULTY OF WYSICS Five-qubit probablity distributions

Mitigating readout noise

FBM, ZZ, MO

Introduction

- POVMs
- Noise model and mitigation
- Quantum Detector Tomography

Applicability of mitigation

- Deviations from noise model
- Finite-size statistics

Applications on IBM's quantum device

QST and QPT

Quantum algorithms

Probability distributions

Summary and open problems

- Five-qubit task of implementing certain probability distributions.
- Uniform Hadamard gates on all qubits.
- 'NOT' X gates on all qubits.

FACULTY OF WYSICS Five-qubit probablity distributions

Mitigating readout noise

FBM, ZZ, MO

Introduction

- POVMs
- Noise model and mitigation
- Quantum Detector Tomography

Applicability o mitigation

- Deviations from noise model
- Finite-size statistics

Applications on IBM's quantum device

QST and QPT Quantum algorithm

Probability distributions

Summary and open problems

Open problems

- Five-qubit task of implementing certain probability distributions.
- Uniform Hadamard gates on all qubits.
- 'NOT' X gates on all qubits.
- 'Mixed' 2 Pauli X-gates on q₀ and q₂, and 2 Hadamard gates on q₃ and q₄. Should give four equally likely outcomes.

FACULTY OF FIVE-qubit probablity distributions

Mitigating readout noise

FBM, ZZ, MO

Introduction

- POVMs
- Noise model and mitigation
- Quantum Detector Tomography

Applicability o mitigation

- Deviations from nois model
- Finite-size statistics

Applications on IBM's quantum device

QST and QPT Quantum algorithm

Probability distributions

Summary and open problems

Summary Open problem

- Five-qubit task of implementing certain probability distributions.
- Uniform Hadamard gates on all qubits.
- 'NOT' X gates on all qubits.
- 'Mixed' 2 Pauli X-gates on q₀ and q₂, and 2 Hadamard gates on q₃ and q₄. Should give four equally likely outcomes.

&

• Figures of merit

 $D_{TV}\left(\mathbf{p}_{exp}^{est},\mathbf{p}_{ideal}\right)$ uncorrected PDF

 $D_{TV}\left(\Lambda^{-1}\mathbf{p}_{exp}^{est},\mathbf{p}_{ideal}\right)$ corrected PDI

FACULTY OF PHYSICS UNIVERSITY OF WARKEN	Five-qubit	probab	lity distril	butions				
Mitigating readout noise FBM, ZZ, MO	$\bigwedge^{-1} \mathbf{p}_{exp}^{est}$ might be unphys	\rightarrow ical closest	closest physical		$\underline{\alpha \coloneqq D_{TV} \left(\Lambda^{-1} \mathbf{p}_{exp}^{est}, \mathbf{p}' \right)}_{\text{upper bound for error introduced by it}}$			
Introduction POVMs Noise model and	-	Name	Standard	Corre	cted	α		
mitigation Quantum Detector Tomography		Uniform	0.110 ± 0.0	$06 0.100 \ \pm$	0.007	0		
Applicability of		NOT	0.66 ± 0.02	2 0 ±	0	0.36 ± 0.09		
mitigation		Mixed	0.196 ± 0.0	$06 0.031 \ \pm$	0.008	$0.019 \pm\ 0.005$		
model Finite-size statistics Applications on IBM's quantum	-	(a) Without accounting for correlations.						
device QST and QPT			Name	Corrected	α			
Quantum algorithms Probability distributions			Uniform	±	±	_		
Summary and			NOT	\pm	\pm			
Summary Open problems			Mixed	±	±	_		

(b) Accounting for correlations for one pair.

PHYSICS UNIVERSITY OF WARRAW	Five-qubit	probab	lity di	stribu	tions				
Mitigating readout noise FBM, ZZ, MO	$\underbrace{\Lambda^{-1}\mathbf{p}_{exp}^{est}}_{\text{might be unphysical}} \rightarrow \underbrace{\mathbf{p}'}_{\text{closest physical}}$				$\underline{\alpha} \coloneqq D_{TV} \left(\Lambda^{-1} \mathbf{p}_{exp}^{est}, \mathbf{p}' \right)$ upper bound for error introduced by				
Introduction POVMs Noise model and		Name	Star	ndard	Corr	ected	α		
mitigation Quantum Detector Tomography		Uniform	0.110	\pm 0.006	0.100 =	± 0.007	0		
Applicability of		NOT	0.66	\pm 0.02	0 =	± 0	0.36 \pm	0.09	
mitigation		Mixed	0.196	\pm 0.006	0.031 =	± 0.008	$0.019\pm$	0.005	
Deviations from noise model Finite-size statistics Applications on IBM's quantum	-	(a) Without accounting for correlations.							
device QST and QPT			Name	Corre	cted	0	ť		
Quantum algorithms Probability distributions			Uniform	0.03 ±	0.02	C)		
Summary and			NOT	0.004 \pm	0.023	0.04 \pm	0.04		
Summary Open problems			Mixed	0.022 ±	0.007	0.023 ±	0.007		

(b) Accounting for correlations for one pair.

Table of Contents

Mitigating readout noise FBM, ZZ, MO

Introduction

POVMs

Noise model and mitigation Quantum Detector

Applicability o mitigation

Deviations from noise model

Applications on IBM's quantum device

QST and QPT Quantum algorithms Probability distributions

Summary and open problems

Summary Open problems

Introduction

Noise model and mitigation Quantum Detector Tomography

- Applicability of mitigation Deviations from noise model Finite-size statistics
- Applications on IBM's quantum device QST and QPT Quantum algorithms Probability distributions
- Summary and open problems
 Summary
 Open problems

FBM, ZZ, MO

Introduction

POVMs

Noise model and mitigation

Quantum Detector Tomography

Applicability of mitigation

Deviations from noise model

Finite-size statistics

Applications on IBM's quantum device

QST and QPT Quantum algorithms Probability distribution

Summary and open problems

Summary

Open problems

• If the readout noise is **classical**, it can be easily **mitigated** on the level of **statistics**.

FBM, ZZ, MO

Introduction

POVMs

Noise model and mitigation

Quantum Detector Tomography

Applicability of mitigation

Deviations from noise model

Finite-size statistics

Applications on IBM's quantum device

QST and QPT Quantum algorithms Probability distribution

Summary and open problems

Summary

Open problems

- If the readout noise is **classical**, it can be easily **mitigated** on the level of **statistics**.
- Non-classical noise and finite-size statistics introduce errors to such correction.

FBM, ZZ, MO

Introduction

POVMs

Noise model and mitigation

Quantum Detector Tomography

Applicability of mitigation

Deviations from noise model

Finite-size statistics

Applications on IBM's quantum device

QST and QPT Quantum algorithms Probability distributions

Summary and open problems

Summary

- If the readout noise is **classical**, it can be easily **mitigated** on the level of **statistics**.
- Non-classical noise and finite-size statistics introduce errors to such correction.
- However, it still might be **better** than not doing anything.

FBM, ZZ, MO

Introduction

POVMs

Noise model and mitigation

Quantum Detector Tomography

Applicability of mitigation

Deviations from noise model

Finite-size statistics

Applications on IBM's quantum device

QST and QPT Quantum algorithms Probability distributions

Summary and open problems

Summary

- If the readout noise is **classical**, it can be easily **mitigated** on the level of **statistics**.
- Non-classical noise and finite-size statistics introduce errors to such correction.
- However, it still might be **better** than not doing anything.
- Proof of principle experiments for 5 qubits on IBM quantum device.

Mitigating readout noise

FBM, ZZ, MO

Introduction

POVMs

Noise model and mitigation

Quantum Detector Tomography

Applicability of mitigation

Deviations from noise model

Finite-size statistics

Applications on IBM's quantum device

QST and QPT Quantum algorithms Probability distributions

Summary and open problems

Summary

- If the readout noise is **classical**, it can be easily **mitigated** on the level of **statistics**.
- Non-classical noise and finite-size statistics introduce errors to such correction.
- However, it still might be **better** than not doing anything.
- Proof of principle experiments for 5 qubits on IBM quantum device.
- See recent related work:

Y. Chen, M. Farahzad, S. Yoo, T.-C. Wei, arXiv:1904.11935 (2018)

Mitigating readout noise

FBM, ZZ, MO

Introduction

POVMs

Noise model and mitigation

Quantum Detector Tomography

Applicability of mitigation

Deviations from noise model

Finite-size statistics

Applications on IBM's quantum device

QST and QPT Quantum algorithms Probability distribution

Summary and open problems Summary Open problems

• Error bars for quantum detector tomography⁶...

⁶For state tomography see: M. Guta, J. Kahn, R. Kueng, J. A. Tropp, arxiv:1809.11162 (2018)

Mitigating readout noise

FBM, ZZ, MO

Introduction

POVMs

Noise model and mitigation

Quantum Detector Tomography

Applicability of mitigation

Deviations from noise model

Finite-size statistics

Applications on IBM's quantum device

QST and QPT Quantum algorithms Probability distribution

Summary and open problems Summary Open problems

- Error bars for quantum detector tomography⁶...
- Less complex detector tomography, realistic qubit networks...

⁶For state tomography see: M. Guta, J. Kahn, R. Kueng, J. A. Tropp, arxiv:1809.11162 (2018)

Contraction Open problems

Mitigating readout noise

FBM, ZZ, MO

Introduction

POVMs

- Noise model and mitigation
- Quantum Detector Tomography

Applicability of mitigation

Deviations from noise model

Finite-size statistics

Applications on IBM's quantum device

QST and QPT Quantum algorithms Probability distribution

Summary and open problems Summary Open problems

- Error bars for quantum detector tomography⁶...
- Less complex detector tomography, realistic qubit networks...
- Algorithms for near-term applications (QAOA, VQE)...

⁶For state tomography see: M. Guta, J. Kahn, R. Kueng, J. A. Tropp, arxiv:1809.11162 (2018)

Contraction Contraction C

Mitigating readout noise

FBM, ZZ, MO

Introduction

POVMs

- Noise model and mitigation
- Quantum Detector Tomography

Applicability of mitigation

Deviations from noise model

Finite-size statistics

Applications on IBM's quantum device

QST and QPT Quantum algorithms Probability distribution

Summary and open problems Summary Open problems

- Error bars for quantum detector tomography⁶...
- Less complex detector tomography, realistic qubit networks...
- Algorithms for near-term applications (QAOA, VQE)...
- Study separation between preparation and measurements...

⁶For state tomography see: M. Guta, J. Kahn, R. Kueng, J. A. Tropp, arxiv:1809.11162 (2018)

Contract of Contract of Contr

Mitigating readout noise

FBM, ZZ, MO

Introduction

POVMs

- Noise model and mitigation
- Quantum Detector Tomography

Applicability of mitigation

Deviations from noise model

Finite-size statistics

Applications on IBM's quantum device

QST and QPT Quantum algorithms Probability distribution

Summary and open problems Summary Open problems

- Error bars for quantum detector tomography⁶...
- Less complex detector tomography, realistic qubit networks...
- Algorithms for near-term applications (QAOA, VQE)...
- Study separation between preparation and measurements...
- Single-shot correction?

⁶For state tomography see: M. Guta, J. Kahn, R. Kueng, J. A. Tropp, arxiv:1809.11162 (2018)

Contract of Contract of Contr

Mitigating readout noise

FBM, ZZ, MO

Introduction

POVMs

- Noise model and mitigation
- Quantum Detector Tomography

Applicability of mitigation

Deviations from noise model

Finite-size statistics

Applications on IBM's quantum device

QST and QPT Quantum algorithms Probability distribution

Summary and open problems Summary Open problems

- Error bars for quantum detector tomography⁶...
- Less complex detector tomography, realistic qubit networks...
- Algorithms for near-term applications (QAOA, VQE)...
- Study separation between preparation and measurements...
- Single-shot correction?

Thank you!

⁶For state tomography see: M. Guta, J. Kahn, R. Kueng, J. A. Tropp, arxiv:1809.11162 (2018)